
N O N L I N E A R  S T A G E  OF H O S E  I N S T A B I L I T Y  

Y u .  A. B e r e z i n  

We examine the one-d imens iona l  p r9b lem of hose  instabil i ty development  in an anisot ropic  p l a sma  
and its effect  on the shock wave s t ruc tu re .  It is shown that  for  compara t ive ly  smal l  t imes  a f t e r  instabil i ty 
initiation the magnet ic  fieId p e r f o r m s  regu la r  osci l la t ions  which b e c o m e  s tochast ic  for  l a rge  t imes  and the 
s y s t e m  t rans i t ions  to the turbulent  r eg ime .  The one-d imens iona l  model  of an anisot ropic  p l a s m a  i s  
unstable  with r e s pec t  to growth of Alfven waves  under the conditions 

PII ~>P.I.-I-"T~ , kR<2 P t l - P J _ - - T U ) J  ' /~="E\-E-t 

where  Pll (Pi) is the p l a s m a  p r e s s u r e  along (across)  the unper turbed magnet ic  field H0, R is the ion L a r m o r  
radius ,  k is the per tu rba t ion  harmonic  wavenumber .  

1. Exac t  Solution in a P a r t i c u l a r  Case .  If the initial per tu rba t ion  is a monochromat ic  wave  with 
c i r c u l a r  polar iza t ion  then, as shown in [1], the prob lem of the nonl inear  s tage of hose  instabi l i ty admi ts  an 
analyt ic  solution of the f o r m  

H~ = H0 B (t) sin (kz + ~ (t)), H~ = Ho B (t) cos (kz + 9 (t)) (i.i) 

where  the ampli tude B(t) and phase  go(t) sa t is fy  the equations 

r = ----~- i - ~ a +  + -I'- m]  (1.2) 

B ~ + U (B) = E = eonst (1.3) 

The potential  energy is 

The total energy E is defined by the magnitude of the initial perturbation and equals 

E = y~B(~ ' + U (B(~ 

1 " o H o , ~ _ ' i k ~ B 2 " 1 , / ,  T = ~)kR [p-~-:(p~ - -p . .L~ T J 
(i.5) 

Here  y is the s m a l l - p e r t u r b a t i o n  growth increment ,  obtained f rom l inear  theory .  In the l imit ing ca se  
of quite sma l l  but finite per tu rba t ions  the ampl i tude of the nonl inear  monochromat ic  wave with c i r c u l a r  
po la r iza t ion  is p ropor t iona l  to the hose instabi l i ty  i nc remen t  

B m a x  ~ T 

Hence this l imit ing case  will  hold for  sufficiently sma l l  inc rements  y. 
the inc rement  into (1.6), we obtain 

(i.6) 

Substituting the expression for 
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(1.4) and E by (1.5). 

[~. - ~ - ~ o  ~ 1 ( 4 ~ p  It ~ - ~/~'~-~ -~'/" 
Bma~ = i i : ~ i / ~ [ ~ - - T h ~ )  ~-T~-~ :] (1.7) 

In the case  of sufficiently long perturbations (kR --" 0) and small  aniso- 
t ropy of the plasma (p•176 ~p l l~  p[I ~ pff  >~H0 ~ / 8n) we have 

Bmax---- 14_. Ap ~'/, 
\ 3  pll ~ ] (1 .8)  

5p = p Ii ~ --  P_~~ -- H02 / 4~ 

Thus, for small  p lasma anisotropy the maximal  amplitude of the nonlinear 
wave is proport ional  to the square root of the degree of plasma anisotropy. 

To determine the maximal wave amplitude in an a rb i t r a ry  case we solved 
numerica l ly  the t ranscendental  equation U (Bmax) = E, where U (B) is given by 

Figure  1 shows the result ing curve of the maximal  wave amplitude squared versus  the 
p re s su re  ratio a = p~_/p~ (the calculation was made for p~ = 30H~/8r, )~ = 80R is the initial perturbat ion 
wavelength). For  small  anisotropy (a --"1) the amplitudes Bma x a re  smal l  and agree with the values ob- 
tained using (1.7). For  large anisotropy (sufficiently small  a) Bmax increases  sharply, reaching values 
Bma x - 2 for ~ = 0.2. 

2. Numerical  Solution Method. For  perturbations of a rb i t r a ry  type an analytic solution of the prob-  
lem in the nonlinear hose instability stage cannot be found. Therefore  we made a numerical  study, some 
resul ts  of which were  presented previously in [1]. 

Basic Equations. The sys tem of equations describing the one-dimensional  anisotropic plasma model 
in dimensionless variables  has the form 

Op s 0 
ot {- 7~ffw(ow) = 0 

o.o_7 + T~~ w~ (3,~,~ + p• + , +~".:-~+ H: + ~z  + -,,~) = o (2.1) 

. r . .  oo ( )o.]} 
V-~a~ L-Vff -- ~ I + n ,~ + ~ ~, o--Y + P• + ~ + ~ :, + a d ~F = 0 

0(2 a {--~A <i p , , - p •  ) 
~V+~ 7 Q w + . - ~  ~ 4 - H d + t l ~  -- t Hu 

+ >_ ow ( 
]/2au L A ~- H 2 ~- Hy ~ O--z-" -~ P• "~- t + Hx~ + Hy 'z 

0--7-  + " ~  g x w  - -  u = 0 

a---V- + ~ H ~w - v = 0 

ff-~ (P II 14-Hx~+HY~ s"-f-w a--~-( p t-~Hx~+H~'Z p~, - l + v , , .  o~ , r ) = o  

(2.z)  

s 0 P• ---- 0 o p~ + ~ w oz 
at P V i + H ~ ~ + Hv2 p V i + H ~: 2 + Hu~ 

/to t" 3p," 1'/, , (p,,~v,, s~p," s:~p d 
VA= V-~a-~' s =  \ ~ ]  , R= . -m\po  ] ' a =  'H~o~ ' b--  

L = u R ,  M = p w ,  N = p u ,  Q = p v  ~' 

The t r ansve r se  velocit ies u, v a re  normed by VA, the longitudinal velocity by the sound speed s, and 
distances by the length L of the computational interval 0r is the number of ion L a r m o r  radii  R in the com-  
putational interval). 

Initial and Boundary Conditions. As the initial perturbations for the t r ansve r se  motion we took the 
sum of severa l  harmonic  c i r cu la r ly  polar ized waves with different phase shifts, amplitudes,  and wave- 
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lengths.  The connection between the ampli tudes  of the t r a n s v e r s e  magnet ic  f ields and the t r a n s v e r s e  ve -  
loci t ies  was de te rmined  f rom the solution of the 1Lnearized s y s t e m  of equations used in l inear  instabil i ty 

analysis :  

Hx (z, 0) = ~, C~cos [ ~  z 

(2.2) 
2~ + 1~) 

4=1 

~ {2~ z ) v(z,O) = - -  ~ C i ~ s i n  \ - ~  + ~ + f l ~  

Here  k i is the length of the i - th  pe r tu rba t ion  harmonic ,  Ci is the ampli tude of this harmonic ,  and the 
magnitude of the phase  go I is found f rom the equation 

cp~ = arc tg [ ~ - 1  (t - -  a - -  2 / a - -  n ~ / ~2~ 2),/,] 

If in (2.2) we se t  p = 1, f i  = f l i  = 0, C 1 # 0, the initial per turba t ion  will be  a c i r c u l a r l y  po la r ized  
monochromat ic  wave.  

To study the influence of hose instabil i ty on the shock wave s t r u c t u r e  we examined the speci f ica t ion 
of the initial  c o m p r e s s i o n  pulse in the fo rm of a Riemann wave.  If in (2.1) we neglect  the t r a n s f e r s e  m o -  
tion, for  the longitudinal motion we obtain the s y s t e m  of gasdynamic  equations with the adiabat ic  exponent 
• = 3, i .e. ,  

Op s a ~--~A ~ ( p w ) = 0 '  p = a p  3 

-~-t (pw) + ~ - s  (3apw~ -4- p ) = 0  
(2.3) 

Setting w = w(p) and substi tut ing into (2.3), we obtain for the sound wave of finite ampli tude,  which 
was se lec ted  as the init ial  pe r tu rba t ion  in the longitudinal motion, 

p (z, 0) = at) 3 (z, 0),  w (z, 0) = p (z, 0) - -  t 

In the n u m e r i c a l  solution, s y m m e t r i c  initial c o m p r e s s i o n  was specif ied:  

(2.4) 

p(z, 0) = t ~ - A e x p  (--z 2 / l  2) (2.5) 

F o r  A = 0 we obtain the p rob lem of the development  of  pure ly  t r a n s v e r s e  initial pe r tu rba t ions .  

As the boundary  conditions we took the per iodic i ty  conditions for  al l  the unknown functions,  i .e. ,  

(I) (0, t) = qb (L, t) (2.6) 

An explicit  d i f ference  s c h e m e  was used to solve the fo rmula ted  p rob lem (2.1), (2.2), (2.4)-(2.6). 

3. Numer i ca l  Solution Resul t s .  We noted above that the use in the calculat ion of the condition (2.5) 
with A = 0 co r re sponded  to the solution of the p rob lem of the evolution of t r a n s v e r s e  initial pe r tu rba t ions  
(in the absence  of initial  longitudinal per turba t ions) .  

An extensive s e r i e s  of calculat ions was  made  for  the ca se  of a s ingle c i r c u l a r l y  polar ized  mono-  
ch romat ic  wave taken as the initial condition [for this case  we must  se t  p = 1, f i  = f l i  = 0, C # 0 in (2.2)]. 
F o r  t imes  t -< y - t  the n u m e r i c a l  solution coincides with the solution of the I inear ized  s y s t e m ,  i .e. ,  a l l  the 
quanti t ies cha rac t e r i z ing  the wave grow exponential ly with the inc rement  y. Fo r  t imes  t > ~-I the non- 
l inear  solution grows m o r e  slowly than the l inear  solution:; the magnet ic  field and the veloci ty  in the wave 
r each  a m a x i m u m  and then decay.  F igure  2 shows the t ime  dependence of the magnet ic  p r e s s u r e  Pm = H~_ 
in the Alfven wave obtained f r o m  the n u m e r i c a l  solution. Fo r  compar i son  the dashed cu rve  shows the t ime  
var ia t ion  of the magnet ic  f ield in the l inear  approximat ion .  

F o r  t imes  0 < t ~< 20~ -1 the magnet ic  p r e s s u r e  p e r f o r m s  regu la r  osci l la t ions  whose ampli tude and 
per iod ag ree  well  with the analytic solution. A typical  cu rve  of magnet ic  p r e s s u r e  Pm v e r s u s  t ime  is p r e -  
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sented in [1]. Here  the quantity Pm means the magnetic field p r e s su re  averaged over  the computational 
space interval ,  i .e. ,  the dimensionless  var iables  

J 
t 

Pm = <H'2 + Hu~> = 7- ~' (Hxs~ -4- HVj 2) 
i=I 

Here  J is the total  number  of gr id  nodes. 

The calculations made for different  pa rame te r s  of the initial p lasma state  gave qualitatively the same 
picture:  F o r  compara t ive ly  small  t imes  (0 < t -< 2 0 - 3 0 7  -1) there  a re  nonlinear regular  oscil lat ions of the 
plasma and field cha rac t e r i s t i c s ,  in which the average  magnetic p r e s s u r e  Pm initially increases  to large 
values which agree  well with the analytic solution and then Pm "re turns"  pract ica l ly  to zero  and the process  
repea ts .  In the course  of t ime the numer ica l  solution takes on quite different  features :  The regula r  osc i l -  
lations of the magnetic p r e s s u r e  d isappear  and the average  magnetic p r e s s u r e  Pm approaches some quasi-  
s ta t ionary  level (see Fig. 1 in [1]). In this p rocess  the spatial  distr ibution of the magnetic field and, nat-  
ural ly,  the other  sys tem cha rac t e r i s t i c s  become stochast ic .  As was noted in [1], such changes in the nature  
of the solution for  t imes  t - 3 0 - 5 0 7  -1 a re  the consequence of the growth of uncontrolled "computing noise" 
in accordance  with the plasma instabili ty descr ibed  by (2.1). 

Thus, a f te r  the regula r  " laminar"  oscil lat ions under the influence of random perturbat ions the sys-  
t em t ransi t ions  into the turbulent  reg ime,  in which the average  magnetic p r e s su re  takes some quasi'sta- 
t ionary  value. As was noted in [1], the magnitude of the mean- squa re  turbulent  magnetic field CH~. ) = Pm 

2 increases  with inc rease  of the degree  of p lasma anisotropy,  r e a c h ~  for example, the value (H~.) = 4 for 
p J p •  = 50 (see Fig. 3 in [1]), i .e. ,  the average  magnetic field ~ ( H ~  in the quasis ta t ionary s ta te  for  such 
anisot ropy becomes  twice as large as the unperturbed field H 0. 

Of considerable  in te res t  is the question of the stochast ic  turbulent  osci l lat ion spec t rum in the quasi-  
s ta t ionary  regime.  We studied the dependence of the magnetic field energy density on the wavelength (or 
the harmonic number) .  The magnetic field energy density p~)  associa ted with the n-th harmonic was found 
f rom the equation 

p(~) = 2 (a~ + b~ ~ + c~ + d~) 

where  

(J+l) /~ (J+i)/ ' ,  

a , =  ~, nx jcos]  1 b~= ~ Hxjsin 2in~ 
. - -  ~ J A i  I 

~--o j~o 
(J-.l.-~)/2 (J-i-:t)/2 

n~cosT-~i-  d~---- ~ Hujsin 2in~ C n ~ -  / ,  J ' - - 1  j=o j=o 

The harmonic  wavelength equals Xn = ~r 
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The calculation resul ts  show that for comparat ively  short  t imes af ter  instability initiation all the 

magnetic energy is contained in the fundamental harmonic,  which is specified as the initial perturbation.  
This would natural ly  be expected in the presence  of regular  osci l lat ions.  With t ransi t ion into the turbulent 
region (when the osci l lat ions become stochastic) the spec t rum begins to change, since other harmonics  be- 
gin to appear  along with the fundamental. The harmonics  with numbers  n0-1  , 2 n 0 , 2 n 0 - 1  , where n o is the 
number  of the fundamental, a re  excited f i rs t  of all. However the higher harmonics  2n0, 2n0-1 decay quite 
rapidly (for example, in the case  P~ = 30 H20/Sv, pj_ = 6.6 H~/87r, n o = 80 this occurs  for  t imes of o rder  
100 7~01). Most of the magnetic energy begins to t rans fe r  into the lower harmonics .  The calculations show 
that the energy t r ans fe r  p rocess  proceeds gradual ly - the harmonics  whose wavelength is longer than that 
of the fundamental are  excited la ter  than those whose wavelength is shor ter .  Figure 3 shows the magnetic 
energy spect ra l  density p(m n) for quite long t imes (t ~ 480 y~0 I, 780 is the growth increment  of the harmonic  
with k = ~ R / 8 0 ,  obtained f rom linear theory) for the case P~ = 30H2/87r, Pl = 6"6H20/87r" The increase  of 
the energy assoc ia ted  with the lower harmonics  is c lear ly  seen in this figure. The magnitude of the energy 
of the individual harmonics  is quite small :  F o r  example, in the subject case for t ~ 480Ynl 0 (n o = 80, Xn0 = 
80R) the magnetic field energy density peak occurs  at the harmonic with n = 13 (kl3 ~490R)and p~3) 
0.06H 2. 

Thus, the resul ts  of the numer ica l  solution show that in the turbulent region in the presence  of hose 
instability there  is magnetic energy flux in the direction of small  wavenumbers .  It is possible that this is 
associa ted with the fact that the large wavenumber region does not "absorb" energy as in the case  of hydro-  
dynamic turbulence,  since in the present  case of Alfven turbulence the viscosi ty  is nondissipative.  

We also made a ser ies  of calculations in which the initial perturbat ion was taken in the fo rm of the 
superposi t ion of two or  three c i rcu la r ly  polar ized waves with different lengths [in (2.2) ~ = 2 or  3, f i  = 
f l  i = 0]. The nature of the solution in the initial stage (meaning, of course ,  the stage which is a lready non- 
l inear but for compara t ive ly  small  t imes ~ 1 0 - 2 0 y  -i) differs significantly f rom the case  of a single c i r -  
cular ly  polar ized wave: There is no "return" of the magnetic p ressure ,  since there  is superposit ioning of 
two waves with different amplitude growth rates  and different periods.  The magnetic field becomes  s to-  
chast ic  quite rapidly and the average magnetic  p r e s s u r e  approaches the quasis ta t ionary level, just as in the 
case  of the single initial monochromat ic  wave. Figure  4 shows the average magnetic p r e s su re  Pm = P m  (t) 
in the case  of an initial per turbat ion in the form of two c i rcu la r ly  polarized Alfven waves, where one wave 
is half as long as the other.  The calculations show that the turbulent magnetic p r e s su re  in the quasis tat ion-  

a r y  reg ime in the presence  of two or  three initial waves is pract ica l ly  equal to the magnetic p r e s s u r e  in 
the case of a single initial wave for the same degree of p lasma anisotropy. Hence we can apparently con- 
clude that the quas is ta t ionary  turbulent magnetic field level is independent of the instability excitation con- 
ditions. 

To study the influence of hose instability on the shock wave s t ructure ,  we made a ser ies  of calcula-  
tions with the initial conditions (2.2), (2.4), (2.5) for # = 1, f = f l  = 0, A ~ 0, which cor respond  to specifi-  
cation at the initial t ime of a Riemann sound wave (with X = 3) and a t r ansve r se  per turbat ion in the form of 
a c i rcu la r ly  polar ized Alfven wave. F igure  5 shows the density distribution in the wave at different t imes 
obtained f rom the numer ica l  solution. The following pa ramete r s  were  used for this calculation 

pll ~ = 10Ho ~ / 8u, pL ~ = 7.5Ho 2 / 8~, A = 1 

(the initial p lasma density at the peak is twice the unperturbed density). In this figure the t ime is expressed 
in t e rms  of the increments  7, calculated f rom the pa ramete r s  of the unperturbed plasma state of outside 
the compress ion  pulse. The degree of p lasma anisotropy in the compress ion  region is natural ly  g r ea t e r  
than outside this region, since the longitudinal p r e s s u r e  is proport ional  to p3 while the t r a n s v e r s e  p res su re  
is proport ional  to p. Therefore ,  within the limits of the compress ion  region, where the plasma density is 
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g r e a t e r  than the unper turbed density,  the instabi l i ty develops f a s t e r ,  s ince the increment  is propor t iona l  to 
the di f ference of the p r e s s u r e s  (longitudinal and t r a n s v e r s e ) .  

Fo r  compar i son  Fig. 5 shows the densi ty distr ibution in a sound wave which propagates  through the 
p l a s m a  in the absence  of t r a n s v e r s e  per turba t ions .  As we would expect,  the initially s y m m e t r i c a l  density 
distr ibution becomes  dis tor ted  and the slope of the leading front  inc reases  until a discontinuity (shock 
wave) fo rms .  In the calculat ions the s teepness  is l imited by the magnitude of the computat ional  (approxi-  
mational) v i scos i ty  and the s t eady - s t a t e  width of the front  amounts  to th ree  to four nodes of the d i f fer -  
ence grid.  

The p re sence  of t r a n s v e r s e  per turba t ions  and the assoc ia ted  hose instabil i ty leads to change of the 
prof i le  and p a r a m e t e r s  of the wave propagat ing along the magnet ic  field. We see  f rom Fig. 5 that this 
wave lags behind the sound wave,  which is a s soc ia t ed  with the reduct ion of the "effect ive" adiabat ic  ex- 
ponent X because  of the p re sence  of the t r a n s v e r s e  motions;  the connection between the p r e s s u r e  and den- 
s i ty  is not specif ied in the f o r m  p ~ pX but is found f r o m  the equation 

d [ i ~ H• 
d-r ) = o 

The mos t  impor tant  r e su l t  of the calcula t ions  is that  the development  of hose instabil i ty leads to r e -  
duction of the wavefront  slope.  This can be in te rp re ted  as the appearance  of a v i scos i ty  assoc ia ted  with 
f luctuations of the p l a s m a  and field p a r a m e t e r s  in the p r e sence  of the instabil i ty resul t ing f r o m  the p r e s -  
s u r e  anisot ropy.  

Thus,  the numer i ca l  solution of the p rob lem in a b road  region of the p a r a m e t e r s  in the c a s e  of a 
s ingle initial c i r cu la r ly  polar ized  Alfven wave shows the following: 

1) There  a re  r egu la r  nonl inear  osci l la t ions  for  t imes  of o rde r  1 0 - 2  0y -1 which agree  well  with the 
analytic solution; 

2) at longer  t imes  the magnet ic  field becomes  s tochas t ic  and t rans i t ion  to the quas is ta t ionary  r e -  
g ime  takes  place; 

3) the quas i s t a t ionary  level of the ave r age  turbulent  magnet ic  field inc reases  with i nc rea se  of p las -  

ma anisotropy;  

4) in the course  of t ime  as the turbulence  develops the magnet ic  field energy t r a n s f e r s  f r o m  the 
fundamental  ha rmonic ,  given by the initial per turbat ion ,  into the longwave port ion of the spec t rum.  

The numer i ca l  solution of the p rob lem with 2-3 initial  c i r cu l a r ly  polar ized  Alfven waves  which differ  
in wavelength and ampli tude shows the absence  of re tu rn  of the magnet ic  p r e s s u r e  in the initial s tage  to 
s m a l l  values  and independence of the quas i s ta t ionary  level  on the instabil i ty excitat ion conditions. 

The numer i ca l  solution also showed smea r ing  of the c o m p r e s s i o n  wave leading front (in the p re sence  
of an initial longitudinal per tu rba t ion  in the f o r m  of a Riemann sound wave) as a r e su l t  of the appearance  
of the turbulent  v i scos i ty  a ssoc ia ted  with hose instabil i ty development .  

In conclusion the author wishes  to thank R. Z. Sagdeev for  suggest ing the problem,  his continued in- 
t e r e s t ,  and d iscuss ion  of the resu l t s ,  and would a lso  like to than R. N. Makarov  for  a s s i s t ance  in the 

calculat ions.  
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